12,720 research outputs found

    General solution for Hamiltonians with extended cubic and quartic potentials

    Full text link
    We integrate with hyperelliptic functions a two-particle Hamiltonian with quartic potential and additionnal linear and nonpolynomial terms in the Liouville integrable cases 1:6:1 and 1:6:8.Comment: LaTex 2e. To appear, Theoretical and Mathematical Physics 200

    The UN Convention on the rights of persons with disabilities: New challenges for EU equality law and governance

    Get PDF
    Introduction: The present research aims to analyse the impact of the UN Convention on the Rights of Persons with Disabilities (CRPD hereinafter) on the EU legal order and governance. To this end, it will focus on three different dimensions: international human rights law, EU law and domestic law

    GreenPhylDB v2.0: An improved database for plant functional genomics

    Get PDF
    Poster presented at 2009 Annual Research Meeting of the Generation Challenge Programme. Bamako (Mali), 20-23 September 200

    Integration of a generalized H\'enon-Heiles Hamiltonian

    Full text link
    The generalized H\'enon-Heiles Hamiltonian H=1/2(PX2+PY2+c1X2+c2Y2)+aXY2−bX3/3H=1/2(P_X^2+P_Y^2+c_1X^2+c_2Y^2)+aXY^2-bX^3/3 with an additional nonpolynomial term μY−2\mu Y^{-2} is known to be Liouville integrable for three sets of values of (b/a,c1,c2)(b/a,c_1,c_2). It has been previously integrated by genus two theta functions only in one of these cases. Defining the separating variables of the Hamilton-Jacobi equations, we succeed here, in the two other cases, to integrate the equations of motion with hyperelliptic functions.Comment: LaTex 2e. To appear, Journal of Mathematical Physic

    GreenPhylDB: phylogenomic resources for comparative and functional genomics in plants

    Get PDF
    Poster presented at 9th PlantGEM 2011. Istanbul (Turkey), 4-7 May 201

    Chronotropic and inotropic effects of adenosine and AMP on the isolated systemic heart of Octopus vulgaris

    Get PDF
    The effect of adenosine on the function of the heart in Octopus vulgaris was studied using an isolated heart preparation. Bolus injections of adenosine or AMP (adenosine precursor) induced both positive chronotropic and inotropic effects. The maximum inotropic effect preceded the maximum chronotropic effect. The impermeable adenosine analogue 2-chloroadenosine elicited a similar effect, while the adenosine uptake blocker dipyridamole did not affect the adenosine response. These results suggest that adenosine acted extracellularly. The concentration-response curves of adenosine and AMP were also determined, by evaluating the effects on ventricular and coronary function. Under these conditions, the potent chronotropic effect elicited by both substances apparently masked or compensated for the inotropic effect, owing to the negative force-frequency relationship known to occur in the octopus heart. The AMP displayed a lower threshold than adenosine, suggesting an higher affinity for the purinergic receptors involved or a strict association between 5'-nucleotidase and the adenosine receptor on the plasma membrane

    Completeness of the cubic and quartic H\'enon-Heiles Hamiltonians

    Full text link
    The quartic H\'enon-Heiles Hamiltonian H=(P12+P22)/2+(Ω1Q12+Ω2Q22)/2+CQ14+BQ12Q22+AQ24+(1/2)(α/Q12+β/Q22)−γQ1H = (P_1^2+P_2^2)/2+(\Omega_1 Q_1^2+\Omega_2 Q_2^2)/2 +C Q_1^4+ B Q_1^2 Q_2^2 + A Q_2^4 +(1/2)(\alpha/Q_1^2+\beta/Q_2^2) - \gamma Q_1 passes the Painlev\'e test for only four sets of values of the constants. Only one of these, identical to the traveling wave reduction of the Manakov system, has been explicitly integrated (Wojciechowski, 1985), while the three others are not yet integrated in the generic case (α,β,γ)≠(0,0,0)(\alpha,\beta,\gamma)\not=(0,0,0). We integrate them by building a birational transformation to two fourth order first degree equations in the classification (Cosgrove, 2000) of such polynomial equations which possess the Painlev\'e property. This transformation involves the stationary reduction of various partial differential equations (PDEs). The result is the same as for the three cubic H\'enon-Heiles Hamiltonians, namely, in all four quartic cases, a general solution which is meromorphic and hyperelliptic with genus two. As a consequence, no additional autonomous term can be added to either the cubic or the quartic Hamiltonians without destroying the Painlev\'e integrability (completeness property).Comment: 10 pages, To appear, Theor.Math.Phys. Gallipoli, 34 June--3 July 200

    Detection and construction of an elliptic solution to the complex cubic-quintic Ginzburg-Landau equation

    Full text link
    In evolution equations for a complex amplitude, the phase obeys a much more intricate equation than the amplitude. Nevertheless, general methods should be applicable to both variables. On the example of the traveling wave reduction of the complex cubic-quintic Ginzburg-Landau equation (CGL5), we explain how to overcome the difficulties arising in two such methods: (i) the criterium that the sum of residues of an elliptic solution should be zero, (ii) the construction of a first order differential equation admitting the given equation as a differential consequence (subequation method).Comment: 12 pages, no figure, to appear, Theoretical and Mathematical Physic
    • …
    corecore